An Organoimido Derivative of the Hexatungstate Cluster: Preparation and Structure of $W_6O_{18}(NAr)$ ²⁻ $Ar = 2.6-(i-Pr)₂C₆H₃$

Thomas R. Mohs,[†] Glenn P. A. Yap,[†] Arnold L. Rheingold,[†] and Eric A. Maatta*^{,†}

Departments of Chemistry, Kansas State University. Manhattan. Kansas 66506-3701, and University of Delaware, Newark, Delaware 19716

Received September 9, *1994*

Polyoxotungstate systems occupy a prominent position in the constellation of polyoxometalate anions,¹ largely because of their utility in diverse applications.2 **A** sampling of current research involving polyoxotungstate components includes their use as oxidation-resistant ligands,³ the preparations of polyoxoanionsupported complexes and catalysts, $4-6$ photo- and electroluminescence studies, $⁷$ and evaluations of their efficacy as anti-HIV</sup> agents.8 **The** development of synthetic methodologies for the preparation of functionalized polyoxotungstate systems seems therefore to hold the promise of enhancing their usefulness. One of the simplest polyoxotungstates is the octahedral hexatungstate, $[W_6O_{19}]^{2-}$, whose structure has been reported by Fuchs.⁹ Given recent successes in the direct functionalization of the $[M₀₆O₁₉]^{2-}$ analogue to produce a variety of organoimido-hexamolybdate derivatives, 10 the preparation of corresponding imido-hexatungstate species was an appealing prospect. Despite several attempts utilizing a variety of imido delivery reagents, however, we (and others^{10c}) have been unable thus far to prepare any imido-hexatungstate species by direct methods; we therefore sought an alternative route and now report the preparation and structure of the imido-hexatungstate system $[Bu_4N]_2[W_6O_{18}]$ - (NAr)], **1** $(Ar = 2.6-(i-pr)_{2}C_{6}H_{3})$.

Following the examples of Klemperer¹¹ and Zubieta,¹² in which their groups demonstrated the construction of $[(L_nM) W_5O_{18}^{\text{max}}$ clusters in condensation reactions involving [Bu₄N]₂-[WO₄] and an appropriate $[L_n M X_y]$ system, we investigated the reaction of ArNCO with $[WO_4]^2$ ⁻. As shown in eq 1, the reaction proceeds to afford the desired product, **1,** albeit in low yield $(\approx)10\%$ based on $[WO_4]^{2-}$.¹³ The reaction can be performed in either 1,2-dichloroethane or pyridine solvent, and **1** is obtained as yellow crystals upon recrystallization from dichloroethane/diethyl ether. The assembly of **1** clearly requires

- Kansas State University.
- * Universitv of Delaware.
- (a) Pope, M. T. *Heteropoly and Isopoly Oxometulates;* Springer-Verlag: New York, 1983. (b) Pope, M. T.; Miiller, A. *Angew. Chem., Int. Ed. Engl.* **1991,** *30,* 34.
- A recent monograph features contributions from many groups engaged in polyoxometalate research and provides both concise overviews and leading references for much current activity: *Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity;* Pope, M. T., Muller, A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1994. Rong, C.; Pope, M. T. *J. Am. Chem. Soc.* **1992,** *114,* 2932.
- Besecker, *C.* J.; Day, V. W.; Klemperer, W. G.; Thompson, M. R.
- *Inorg. Chem.* **1985,** *24,* **44.**
- Mizuno, N.; Lyon, D. K.; Finke, R. G. *J. Cutal.* **1991,** *128,* 84.
- Hill, C. **L.;** Brown, R. B., Jr. *J. Am. Chem. SOC.* **1986,** *108,* **536.**
- Yamase, T.; Naruke, H. *Coord. Chem. Rev.* **1991,** *111,* 83.
- (a) Hill, C. L.; Weeks, M. S.; Schinazi, R. F. *J. Med. Chem.* **1990,** *33,* **2767.** (b) Weeks, M. S.; Hill, **C.** L.; Schinazi, R. F. *Ibid.* **1992,** *35,* 1216.
- Fuchs, J.; Freiwald, W.; **Hartl,** H. *Acta Crystallogr.* **1978,** *B34,* 1764.
- (a) Du, Y.; Rheingold, A. L.; Maatta, E. A. *J. Am. Chem. Sac.* **1992,** *114,* 345. (b) Strong, J. B.; Ostrander, R.; Rheingold, A. L.; Maatta, E. A. *Ibid.* 1994, *116*, 3601. (c) Errington, R. J.; Lax, C.; Richards, D. G.; Clegg, W.; Fraser, K. A. In ref 2, p 105. (d) Proust, A.; Thouvenot, R.; Chaussade, M.; Robert, F.; Gouzerh, P. *Inorg. Chim. Acta* **1994,** *224,* 81.
- Che, T. M.; Day, V. W.; Francesconi, **L.** C.; Fredrich, M. F.; Klemperer, W. G.; Shum, W. *Inorg. Chem.* **1985,** *24,* 4055.
- Kang, H.; Zubieta, J. *J. Chem.* **Soc.,** *Chem. Commun.* **1988,** 1192.

Figure 1. ORTEP representation of the anion within 1. Selected bond lengths (A) and angles (deg) : $W(1)-N(1) = 1.719(19)$; $W(2)-O(3)$ $= 1.681(18)$; W(3)-O(5) = 1.671(19); W(4)-O(7) = 1.674(19); W(5)-O(13); W(6)-O(18) = 1.723(17); W(1)-O(1) = 2.255(15); $W(2)-O(1) = 2.311(15)$; $W(3)-O(1) = 2.358(15)$; $W(4)-O(1) =$ 2.342(15); $W(5)-O(1) = 2.323(14)$; $W(6)-O(1) = 2.342(14)$; $W(1)$ $N(1)-C(6) = 176.7(18); N(1)-W(1)-O(1) = 177.1(7); N(1)-W(1)$ $O(2) = 104.4(8)$; N(1)-W(1)-O(8) = 102.2(8); N(1)-W(1)-O(9) = 100.0(8); N(1)-W(1)-O(14) = 105.0(8).

a [W04]2-:ArNC0 ratio of **6:1,** but carrying out the reaction using this stoichiometry did not improve the yield of **1** over

0020- 166919511334-0009\$09.00/0 *0* 1995 American Chemical Society

Bond Lengths Involving μ^2 -Oxygen Atoms in $[W_6O_{18}(NAr)]^2$ ⁻ (esd range: 0.015 - 0.017)

1.939

Bond Lengths Involving μ^2 -Oxygen Atoms in $[Mo_6O_{18}(NAr)]^2$ ⁻ (esd range: 0.011 - 0.013)

wm

1.896

Figure 2. Comparison of bond lengths (A) in the three equatorial belts in the structures of $[W_6O_{18}(NAr)]^{2-}$ and $[M_0O_{18}(NAr)]^{2-}$. The imidobearing metal atom in each structure is M(1).

that resulting from an equimolar mixture. Likewise, the deliberate addition of H_2O to the reaction mixture did not exert a noticeable effect on the yield of $1.^{14}$ Although we have not detected any intermediates in the reaction sequence leading to **1,** a plausible mechanism involves the initial formation of the imido-tungstate species $[WO₃(NAr)]²⁻$, which then aggregates with additional $[WO₄]²⁻$ (probably with the involvement of H20) to yield the hexanuclear product.

M(3)

1.916

1.906

The absorption spectrum of **1** in acetonitrile in the 200-600 nm region contains bands at 229 ($\epsilon = 2.91 \times 10^4$) and 292 nm $(\epsilon = 2.23 \times 10^4)$, while the spectrum of $[W_6O_{19}]^{2-}$ displays bands at 209 nm $(\epsilon = 1.95 \times 10^4)$ and 280 nm $(\epsilon = 1.10 \times$ $10⁴$). For a ligand-to-metal charge transfer process, the bathochromic shift of the spectrum of **1** is the expected result of replacing an oxo ligand with the less electronegative NAr ligand.

The structure of the anionic portion of 1 is shown in Figure 1.¹⁵ The anion features the arylimido ligand occupying a terminal site on the hexatungstate cage. The short $W-N$ bond length (1.719(19) Å) and nearly linear $W-N-C$ angle (176.7- $(18)^\circ$) are typical of W=NR interactions in W(VI) organoimido complexes. No significant variations are discerned in the terminal W-O bond lengths, which range from $1.671(19)$ to 1.723(17) A. In agreement with previous observations in related $[Mo₅O₁₈(Mo=NR)]²⁻ systems (R = p-C₆H₄CH₃; ^{10a}R = t-Bu; ^{10c}$ $R = NMePh^{12}$, the bond length from the imido-bearing W(1) atom to the central $O(1)$ atom is somewhat shorter $(2.255(15))$ \hat{A}) than the remaining W-O(1) interactions (2.335 \hat{A} average).

(14) These reactions were undertaken with the consideration that a likely stoichiometry for the reaction is

 $6[Bu_4N]_2[WO_4] + ArNCO + 5H_2O \rightarrow$ $[Bu_4N]_2[W_6O_{18}(NAr)] + CO_2 + 10[Bu_4N][OH]$

Crystal data (217 K) for **1:** orthorhombic, *Pbca, a* = 18.429(3) **A,** *^b* = 20.600(6) **A,** *c* = 31.428(6) **A,** V = 11931(5) **A3,** *2* = 8, *A* = 0.710 73 Å, $\mu = 11.587$ mm⁻¹. A total of 9366 independent reflections were collected ($4^{\circ} \le 2\theta \le 48^{\circ}$), of which 4866 with $F_o > 5\sigma(F_o)$ were used in the refinement, leading to final discrepancy indices of $R = 5.65\%$ and $R_w = 7.61\%$.

Figure 2 compares the bond lengths involving the μ_2 -oxygen atoms in 1 and in its Mo homologue.^{10b} Patterns of distinct irregularities are evident for $[Mo₆O₁₈(NAr)]²$; corresponding variations of smaller magnitude are perhaps suggested by the data for 1, but the differences are within 3σ . In his comparison of the parent $[Mo_6O_{19}]^2$ ⁻ and $[W_6O_{19}]^2$ ⁻ structures, Fuchs⁹ noted similar relationships.

1.915

1.922

Complex 1 can be reduced to the corresponding $[W_6$ - $O_{18}(NAr)$ ³⁻ trianion. Cyclic voltammetry in acetonitrile solution reveals a quasi-reversible wave centered at -1.30 V under conditions at which the $[Cp_2Fe]/[Cp_2Fe]^+$ couple appears at 0.238 V (vs Ag/Ag⁺). The parent $[\text{W}_6\text{O}_{19}]^{2-}$ system in acetonitrile displays a corresponding reduction at -1.09 V.¹⁶ The shift of -0.21 V in reduction potential induced by $\alpha x_0/N$ Ar susbstitution in the hexatungstate system is similar to the -0.25 V effect observed in the analogous hexamolybdate species^{10b} V) and underscores the premise that an NAr ligand is superior to the oxo ligand as an electron donor.¹⁷ $(E_{1/2}$ values: $[Mo_6O_{19}]^2$, -0.707 V; $[Mo_6O_{18}(NAr)]^2$, -0.958

1 possesses good hydrolytic stability: a sample of **1** in CD3- CN treated with $H₂O$ (1 equiv) showed no detectable decomposition as monitored by ¹H NMR spectroscopy after being maintained at 56 °C for 26 days; further addition of H_2O (10 equiv total) likewise caused no decomposition after 5 additional days at 56 °C.

Acknowledgment. We are grateful to the Department of Energy, Office of Basic Energy Sciences (Grant No. DE-FG02- 92ER14246), for supporting this work.

Supplementary Material Available: Text giving synthetic details and tables giving a structure determination summary, atomic coordinates, bond distances, bond angles, anisotropic thermal parameters, and hydrogen atom coordinates (12 pages). Ordering information is given on any current masthead page.

IC941068G

(17) (a) Nugent, W. A,; Mayer, **J.** M. *Metal-Ligand Multiple Bonds;* Wiley: New York, 1988. (b) Hogarth, G.; Kondaris, P. C.; Saunders, G. C. *J. Organomet. Chem.* **1991,** *406,* 153.

⁽¹³⁾ Anal. Calcd (found) for $C_{44}H_{89}N_3O_{18}W_6$: C, 25.76 (26.22); H, 4.37 $(d, 2 H, C_6H_3(m)), 6.89$ (t, 1 H, $C_6H_3(p)$), 3.80 (septet, 2 H, CH(CH₃)₂), 3.09 (m, 16 H, NCHz), 1.60 (m, 16 H, CHz). 1.35 (m, 16 H, *CHZ),* 1.27 (d, 12 H, CH(CH₃)₂), 0.95 (t, 24 H, CH₃). **IR** (Nujol, cm⁻¹): 998 (w, sh), 976 *(s),* 808 (br, s). (4.50); N, 2.05 (1.99). 'H NMR (CD3CN, 298 K, 400 MHz): *6* 7.23

⁽¹⁶⁾ $[W_6O_{19}]^2$ ⁻ in acetonitrile was reported to display two successive one-
electron reductions at -1.24 and -2.33 V vs Ag/Ag⁺, but the value for the $[Cp_2Fe]/[Cp_2Fe]^+$ couple was not mentioned: Dabbabi, M.; Boyer, M.; Launay, **J.** P.; Jeannin, Y. *J. Electroanal. Chem. Intetjacial Electrochem.* **1977,** *76,* 153.